胡可课题组
光电化学(PEC)电池是精细化学合成的新兴工具,但通常存在太阳能转化效率较低的问题,尤其是在对能量要求高的反应物活化中。本文报告了对高能耗C(sp)的氯化和氧合3)–氢键使用两步耦合的PEC电池,避免直接产生高能氯自由基(Cl ̇)。光电阳极由一个BiVO组成4经过TiO改造的半导体2以及一个CoNi2Ox氯演化反应(CER)催化剂。在单日照下,BiVO4/TiO2/CoNi2Ox光电阳极的光电流密度为2.9毫安厘米−2在0.8 V时,CER与可逆氢电极(RHE)相比,其施加偏置光子对电流效率最高,达3.20%。随后的氯化解2在白光下产生Cl ̇,激活C(sp3氢原子转移后的)–氢键。PEC电池选择性地在氩气下氯化烃类,并在大气转为二氧气时实现氧合,从而产生醛类、酮类和醇类,提供了一种绿色高效的合成方法。对反应机制的研究显示,Cl ̇是C(sp3)–氢键活化。这项工作提出了一种太阳能驱动的节能策略,用于从氯化盐生成氯 ̇ 和激活高能耗C(sp3)–氢键,凸显了其在推动绿色化学合成方面的巨大潜力。
Photoelectrochemical (PEC) cells are emerging tools for fine chemical synthesis, but often suffer from low solar-to-product conversion efficiency, especially in energy-demanding reactant activation. Herein, we report chlorination and oxygenation of energy-demanding C(sp3)–H bonds using a two-step coupled PEC cell, avoiding the direct generation of high-energy chlorine radicals (Cl˙). The photoanode consists of a BiVO4 semiconductor modified with TiO2 and a CoNi2Ox chlorine evolution reaction (CER) catalyst. Under 1 sun illumination, the BiVO4/TiO2/CoNi2Ox photoanode showed a photocurrent density of 2.9 mA cm−2 for CER at 0.8 V vs. the reversible hydrogen electrode (RHE) with the highest applied bias photon-to-current efficiency of 3.20%. Subsequent homolysis of Cl2 under white light generates Cl˙, activating C(sp3)–H bonds following hydrogen atom transfer. The PEC cell selectively chlorinated hydrocarbons under argon, and enabled oxygenation to afford aldehydes, ketones, and alcohols when the atmosphere was switched to dioxygen, offering a green and efficient synthetic approach. Studies on the reaction mechanism revealed that Cl˙ is the key reactive intermediate responsible for C(sp3)–H bonds activation. This work offers a solar-driven energy-efficient strategy for the generation of Cl˙ from chloride salts and activation of energy-demanding C(sp3)–H bonds, highlighting its great potential in advancing green chemical synthesis.