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ABSTRACT: Recent advances in our mechanistic understanding of dye-sensitized electron transfer reactions occurring at metal
oxide interfaces are described. These advances were enabled by the advent of mesoporous thin films, comprised of anatase TiO2
nanocrystallites, that are amenable to spectroscopic and electrochemical characterization in unprecedented molecular-level detail.
The metal-to-ligand charge transfer (MLCT) excited states of Ru polypyridyl compounds serve as the dye sensitizers. Excited-state
injection often occurs on ultrafast time scales with yields that can be tuned from unity to near zero through modification of the
sensitizer or the electrolyte composition. Transport of the injected electron and the oxidized sensitizer (hole hopping) are both
operative in the composite mechanism for charge recombination between the injected electron and the oxidized sensitizer.
Sensitizers that contain a pendant electron donor, as well as core/shell SnO2/TiO2 nanostructures, often prolong the lifetime of the
injected electron and provide fundamental insights into adiabatic and nonadiabatic electron transfer mechanisms. Regeneration of
the oxidized sensitizer by iodide is enhanced through halogen bonding, orbital pathways, and ion pairing. A substantial ∼10 MV
cm−1 electric field is created by electron injection into TiO2 nanocrystallites that induces ion migration, reports on the sensitizer
dipole orientation, and (in some cases) reorients or flips the sensitizer. Dye-sensitized conductive oxides also promote long-lived
charge separation with bias dependent kinetics that provide insights into the reorganization energies associated with electron and
proton-coupled electron transfer in the electric double layer.

1. INTRODUCTION
Early dye sensitization research focused on silver halide
reduction for latent image formation applications in photog-
raphy.1 Photoelectrochemists in the 1960s, in particular the
late Heinz Gerischer, sensitized planar metal oxide materials to
test and develop theories for interfacial electron transfer.2−4

Dye sensitization of colloidal semiconductor suspensions
explored throughout the 1980s was inspired by possible
applications in solar water splitting.5 O’Regan and Graẗzel
reported a substantial breakthrough in solar-to-electrical
energy conversion with the advent of mesoporous thin (4−6
μm) films comprised of interconnected anatase TiO2 nano-
crystallites (20 nm diameter), Figure 1a.6 The light-to-
electrical energy conversion realized in regenerative solar
cells based on these materials marked the first time that the
performance of a molecular light absorber was at all
comparable to solid-state photovoltaic materials.7,8 More
relevant to this Perspective is the fact that these mesoporous
thin films allowed spectroscopic and electrochemical character-
ization of interfacial electron transfer processes in molecular
level detail that was not previously possible.
The metal-to-ligand charge-transfer (MLCT) excited states

of (dπ)6 coordination compounds (sensitizers) continue to be
the most optimal for fundamental study of photoinduced
electron transfer reactions, Figure 1b.9 Surface coverages on
the order of 10−8 mol cm−2 are realized when [Ru(bpy)3]

2+,
where bpy is 2,2′-bipyridine, sensitizers with carboxylic or
phosphonic acid groups are reacted with a mesoporous thin
film.7,8 This corresponds to about a 1000-fold increase in

surface area relative to a planar electrode and a tremendous
improvement in the solar light harvesting efficiency. About 500
sensitizers are present on each TiO2 nanocrystallite, consistent
with that expected for a molecular monolayer. The close
proximity of the sensitizers enables lateral intermolecular
energy and electron transfer “hole hopping” reactivity, Figure
1c.
Of particular importance to this Perspective are the kinetics

for excited-state electron injection and recombination of the
injected electron with the oxidized sensitizer. These interfacial
electron transfer reactions are understood with the Gerischer
type diagram shown in Figure 2.2−4 Excited-state injection
occurs from a Gaussian distribution of sensitizer donor states
located below the excited-state potential E°(S+/*) + λ, where λ
is the total reorganization energy. Recombination occurs from
the conduction band edge ECB, to the oxidized sensitizer
distribution. Gerischer emphasized that an interfacial rate
constant, k, was related to the integrated overlap of the
molecular distributions W(E) with the semiconductor D(E)
and the product of the electronic coupling, HDA, squared. Such
diagrams accurately predict activationless electron injection
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when E°(S+/*) is greater than 2λ above ECB, and slow
recombination when E°(S+/0) lies within the forbidden energy
gap. Note that in mesoporous nanocrystalline materials the
nature of the redox active states as conduction band or
localized TiIV/III states remains contentious.7,8 It is also
interesting to note that λ is expected to be highly sensitive
to the sensitizer location within the electric double layer, a
point which is detailed in section 2.4.

The primary goal of this Perspective is to provide our state-
of-the-art mechanistic understanding of dye-sensitized inter-
facial molecular reactions in mesoporous anatase TiO2 thin
films in acetonitrile and aqueous electrolytes. Some specific
questions that this Perspective hopes to address include the
following:

- What mechanistic insights on interfacial electron
transfer have been garnered since Graẗzel and O’Regan’s
1991 breakthrough?
- What key unanswered questions remain in dye
sensitization?
- What might be learned by utilizing oxides other than
anatase TiO2?
- What applications might be enabled by further
mechanistic study of dye sensitization?

2. DISCUSSION AND PERSPECTIVES
2.1. Excited-State Electron Transfer. 2.1.1. Excited-

State Injection Kinetics. A significant advance in excited-state
injection was garnered from study of a dozen [RuII(4,4′-
(PO3H2)2-bpy)(LL)2]

2+ sensitizers, where (LL) is an ancillary
bpy ligand used to tune the excited-state potentials from −0.69
to −1.03 V vs NHE, Figure 3a.10 Note that a common
reference sensitizer in this Perspective is (LL) = bpy,
abbreviated as TiO2|RuP. Excited-state injection showed
biphasic kinetics occurring mainly on the 3−30 ps and 30−
500 ps range in acidic aqueous solution, Figure 3b. The slower

Figure 1. (a) A plane SEM view of a mesoporous nanocrystalline (anatase) TiO2 thin film on a fluorine-doped tin oxide glass substrate, (b) the
molecular structure of [Ru(bpy)2(dcb)]

2+, abbreviated RuC and the absorption spectra of TiO2 and TiO2|RuC, and (c) lateral intermolecular self-
exchange “hole hopping” across the TiO2 surface.

Figure 2. A Gerischer diagram relevant to excited-state injection and
charge recombination.

Figure 3. (a) Structure of RuII sensitizers; when R = H the sensitized material is abbreviated as TiO2|RuP. (b) Excited state electron injection from
1MLCT and thermally equilibrated 3MLCT states. (c) Metal-to-ligand (MLCT) and metal-to-particle (MPCT) excited-state injection from
[Fe(bpy)(CN)4]

2−. (d) Photoluminescence quenching of TiO2|RuC by the Li+ in CH3CN that is correlated with the excited-state injection
quantum yield.
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process was assigned to injection from the luminescent
3MLCT excited state. In agreement with Gerischer theory,3

the rate constants were directly correlated with the energetic
overlap of the TiO2 acceptor states and the excited-state
E°(RuIII/II*). The faster components were assigned to injection
from higher energy excited states. The data indicate that the
commonly reported nonexponential injection kinetics can
simply be attributed to a continuous decrease in the injection
rate constants that accompanies excited-state relaxation from
the initially formed Franck−Condon state to the thermally
equilibrated 3MLCT state, Figure 3b.11−13

The success of ruthenium-based sensitizers and observation
of ultrafast injection has motivated its replacement by iron.
Due to their very short MLCT excited-state lifetimes, FeII

diimine complexes typically display small injection yields with
spectroscopic features characteristic of high spin ligand field
states; injection is kinetically slow relative to intersystem
crossing and/or internal conversion.14−17 A recent break-
through was the discovery that N-heterocyclic FeII complexes
provide greatly enhanced injection yields, φinj > 0.9.18−22 This
exciting advance appears to emanate from much longer-lived
MLCT excited states and may soon enable efficient energy
conversion with a first row transition metal sensitizer. Excited-
state injection yields near unity have also been reported for CoI

complexes, including Vitamin B12.
23 An intriguing aspect of

this interfacial chemistry is that the initial CoI state is four-
coordinate, while the CoII product adopts a five-coordinate
geometry. Hence the coordination number changes that
accompany CoII/I redox chemistry provides an opportunity
to control the reaction.23

Alternative pathways exist for the transfer of electrons from
sensitizers to TiO2 with light. For sensitizers linked to TiO2
through ambidentate cyanide ligands, metal-to-particle FeII−
CN−TiIV → FeIII−CN−TiIII charge transfer (MPCT)
absorption bands are evident, Figure 3c.24−28 An advantage
of MPCT is that quantitative injection yields are realized.
Indeed, in a series of TiO2|Fe(CN)4(LL) φinj was 1 for MPCT
while injection from the MLCT state was inefficient and ionic
strength dependent.25 A mechanistic advantage of MPCT
transitions is that they are amenable to Mulliken−Hush
analysis, providing estimates of HDA and λ. An HDA ≈ 3000
cm−1 was reported, a value in good agreement with known
mixed-valent metal cyanide complexes and subsequent analysis
through Stark spectroscopy.26,27 The spectral breadth of the
MPCT transition provides large reorganization energies that
DFT calculations suggest is due to a localized TiIV/III redox
reaction that is expected to be subject to a Jahn−Teller
distortion.28

2.1.2. Influence of pH. It is well-known in the photo-
electrochemical literature that the surface adsorption of
electrolyte cations can induce dramatic shifts in the energetic
positions of the valence and conduction band edges while
maintaining a constant band gap; i.e., the band edges move in
parallel.29 The classical example is the Nernstian 59 mV/pH
shift of the band edges, which is generally attributed to the
equilibrium shown in eqs 1 and 2.30,31 For anatase TiO2 this
acid−base equilibria is not necessarily confined to the surface
and may also occur within the crystalline lattice.31

Ti OH Ti OH HIV
2

IVF ++ +
(1)

Ti OH Ti O HIV IVF +− + (2)

Sutin reported a strong pH dependence to dye-sensitized
photocurrents with rutile TiO2 single crystals.32 Assuming a
Nernstian shift of ECB, the reorganization energy was estimated
to be λ = 0.25 eV. A curious aspect of this early work was a
noted discrepancy between the predicted and measured pH
onset. Watson and co-workers reinvestigated this with four
porphyrins, whose excited-state reduction potentials spanned a
660 mV range.33 Interestingly, the pH onset was sensitizer
independent and considerably more acidic than expected. A
mechanism was proposed wherein excited-state injection
occurred from pH 12 to 2, yet a sustained photocurrent
required protonation of a surface Ti(III) titanol group that
only occurred at pH < 3. Hence, the pH-dependent
photocurrents reflected the charge collection efficiency and
not the excited-state injection yield. There remains little
precedence for such geminate recombination in the dye-
sensitized TiO2 literature, and this interesting behavior
deserves further experimental work.7,26

2.1.3. Influence of Electrolyte Cations in Organic Solvents.
Reduction of anatase TiO2 results in the appearance of a well-
documented blue-black color.29,34 The spectrum is insensitive
to the identity of the electrolyte, but the potential onset for
coloration is not. Reduction occurs at applied potentials almost
1 eV more positive in Li+ than TBA+ CH3CN electrolytes,
where TBA is tetrabutylammonium.34−37 Li+ is hence
considered a ‘potential determining ion’ as are other alkali
and alkaline earth cations. It appears that the commercially
available and sol−gel processed anatase TiO2 thin films
preferentially adsorb cations from organic solutions. Note
that, in water, the coloration onset potential is determined
solely by the proton concentration, 59 mV/pH.29−31

Based on these energetics, one would anticipate inefficient
excited-state injection unless a potential determining cation
was present in the CH3CN electrolyte. Indeed, light excitation
of [RuII(4,4′-(CO2H)2-bpy)(bpy)2]

2+, abbreviated TiO2|RuC
in neat CH3CN, resulted in long-lived excited states with φinj <
0.2. The yields increased to unity when Li+, or other alkali or
alkaline-earth cations, were present in the CH3CN.

34 It was
possible to reversibly tune φinj from near zero to unity just by
controlling the Li+ concentration in the external acetonitrile
solution, Figure 3d. A correlation of φinj with the size-to-charge
ratio of the cations suggested that Lewis acid−base interactions
with the oxide lowered the TiIV/III reduction potential resulting
in better energetic overlap with the excited-state sensitizer
levels. An alternative explanation is that adsorbed cations
stabilize surface hydroxide ions and decrease the interfacial pH.
Indeed the presence of strong Lewis acids or protons in the
electrolyte often results in desorption of the protonated form
of the sensitizer.34,38 An energetic shift of the TiO2 acceptor
states with electrolyte cation provides a simple explanation for
O’Regan and Graẗzel’s observation that the photocurrent was
larger (and the open circuit photovoltage smaller) when LiI
was utilized instead of TBAI.6

Decoupling the TiO2 band edge positions from the
electrolyte composition is beneficial to some solar applications.
Toward this goal, Morris and co-workers utilized surface
functionalization, with long alkyl chains that contain a terminal
alkoxysiloxane, phosphonate, or carboxylic acid group, as a
means to control cation adsorption.39 In the absence of a
potential determining cation, surface functionalization lowered
the energy of the acceptor states, i.e. shifted them away from
the vacuum level. When LiClO4 was present in the electrolyte,
the TiO2 reduction onset was not affected, but the density of
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states at more negative potentials decreased significantly
suggesting that the surface functionalization did indeed inhibit
Li+ adsorption.
2.2. Sensitizer Regeneration. The iodide/iodine redox

mediator has been the subject of several prior reviews and will
only be summarized here.40,41 For champion sensitizers, iodide
oxidation occurs on a hundred of nanosecond time scale.
Incident-photon-to-current efficiencies (IPCE) measured at
the short circuit condition often indicated that both excited-
state injection and regeneration occur with a quantum yield of
one. However, regeneration is not quantitative at the open
circuit or power point conditions42,43 because recombination is
much more rapid when the number of electrons in each
nanocrystallite is large.44 It is not sufficient for S+ to be
thermodynamically competent of iodide oxidation; the
reaction must occur more rapidly than the competitive
recombination reaction. The realization that regeneration can
be further optimized continues to inspire research to design
interfaces capable of more efficient iodide oxidation.
2.2.1. Halogen and Chalcogen Bonding. A successful

approach for enhancing regeneration was realized with
sensitizers capable of halogen and chalcogen bonding, Figure
4.45−49 In collaboration with the Berlinguette group, a series of
four D−π−A sensitizers were investigated with triphenylamine
donors bearing halogen atoms in the para-position of the two
terminal phenyl rings, Figure 4b.46 DFT calculations revealed a
significant σ-hole for the oxidized forms of the iodo- and
bromo-sensitizers yet not for the fluoro-sensitizer, results
consistent with the larger halogen bonding field.49−51 Kinetic
studies revealed a correlation between the sensitizer’s ability to
halogen bond and the second-order rate constant for iodide
oxidation. Synchrotron studies provided direct evidence for a

nucleophile-σ-hole adduct.47 While the enhancements in the
power conversion efficiency were small, these studies provided
a proof-of-principle demonstration that halogen bonding can
be quantified and utilized to enhance electron transfer kinetics
at molecular−semiconductor interfaces.
The observation of halogen bonding raised the more general

question of whether iodide oxidation takes place by inner- or
outer-sphere mechanisms.52,53 In other words, does iodide
form a bond with the oxidized sensitizer prior to electron
transfer? To address this question, a series of five sensitizers
with a heterocyclic group competent for forming a chalcogen−
iodide bond were investigated.48 The free energy change for
regeneration was small, and core/shell SnO2/TiO2, materials
enabled iodide oxidation to compete kinetically with
recombination. Under such conditions, the collisional
frequency was large thereby magnifying the desired inter-
molecular interactions. Indeed, more rapid iodide oxidation
was evident when the β-LUMO of the oxidized sensitizer had
significant oxidizing character on the chalcogen atom, behavior
attributed to enhanced electronic coupling through an inner-
sphere orbital pathway.48 This finding motivates the design of
next generation sensitizers that have an orbital pathway for
regeneration.

2.2.2. Ion Pairing. Many sensitizers are cationic in their
ground and oxidized states,40,41,53 yet until recently clear
evidence of ion pairing with iodide was lacking at dye-
sensitized TiO2 interfaces.

54 Highly cationic Ru(II) sensitizers,
[Ru(tmam)2(dcb)]

6+, where tmam is 4,4′-bis(trimethylamino-
methyl)-2,2′-bipyridine revealed clear evidence for ion pairing
with iodide as well as with an anionic cobalt redox mediator
(Keq > 104 M−1) in CH3CN, Figure 4c. With the Co mediators,
excited-state injection and regeneration occurred on time

Figure 4. (a) Sensitizers for chalcogen binding and a plot of the rate constant for iodide oxidation versus the chalcogen atom orbital contribution
from the β-LUMO. (b) Structure of the D−π−A sensitizers utilized for halogen bonding with DFT analysis showing that the σ-hole in the ground
and oxidized states increases with the halogen principle quantum number. (c) Representation of interfacial ion pairing between surface anchored
[Ru(dcb)(tmam)2]

6+ and an anionic Co complex.
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scales less than 10 ns. Hence, the impact of ion pairing was to
remove the diffusional limitations generally associated with
sensitizer regeneration. This ground-state association almost
doubled the light-to-electrical energy conversion efficiency
compared to cases where ion pairing was absent.54 Hence,
highly charged cationic sensitizers undergo ion pairing at dye-
sensitized TiO2 interfaces that promotes rapid regeneration.
2.3. Charge Recombination. 2.3.1. Slow Nonexponen-

tial, Concentration-Dependent Kinetics. Recombination of an
injected electron with an oxidized sensitizer yields ground-state
products and typically wastes >1 eV of free energy. Studies of
TiO2|RuC first revealed that charge recombination was not
slow because of inherently small rate constants, but rather
because the process is second-order in nature.34 Under
conditions where the number of charge separated states was
systematically varied, the same second-order rate constant was
extracted. Excited-state injection creates one injected electron
and one oxidized sensitizer, and an overall second-order rate
law r = k[S+][TiO2(e

−)] might be anticipated.55 While the
numbers of injected electrons and oxidized sensitizers are
equal, the concentrations implied by the brackets are quite
different. Electrons are injected into a spherical nanocrystal
interconnected to other nanocrystals in a mesoporous film
while the oxidized sensitizers are confined to the quasi-two-
dimensional surface. Thus, recombination is a fascinating
mechanistic process between redox equivalents on opposite
sides of an interface with translational freedom that must first
come into close proximity before exergonic electron transfer
occurs.
While the second-order kinetic model adequately modeled

recombination following light excitation of TiO2|RuC, it did
not provide adequate fits for gold standard sensitizers like N3,
cis-Ru(dcb)2(NCS)2.

56 The widely utilized Kohlrausch−
Williams−Watts (KWW) function, eq 3, is more generally
applicable where k is the rate constant, A0 is the initial
amplitude, and β is inversely related to the width of an
underlying Lev́y distribution of rate constants 0 < β < 1. An
“average” rate constant, kcr, can be calculated from the first
moment, eq 4.57,58

A t A e( ) kt
0

( )= − β

(3)

( )
k

k
cr 1

β=
Γ

β (4)

An advantage of this function is that the normalized kinetic
data are fit to only two parameters. Further, the inverse Laplace
transform of this function is known at specific values of β and
has been approximated at others, thereby providing the
underlying Lev́y distribution, Figure 5a,c.60 An unsatisfactory
aspect is that such transformations are inherently ill-
conditioned, and the extracted KWW parameters are usually
sensitive to the initial number of interfacial states that are
photocreated. Hence meaningful comparative studies of
different sensitizers require that initial concentrations of
interfacial states be held constant.
2.3.2. Kinetic Models and Hole Hopping. The KWW

function was proposed empirically by Kohlrausch and later
derived by Scher and Montroll using a random walk kinetic
model.57−59 Nelson extended this model to dye-sensitized
TiO2 interfaces where the oxidized sensitizer remains fixed at
the injection site and the injected electron undergoes thermally
activated transport between traps states prior to recombina-

tion, Figure 5b.61,62 Electron transport measurements have also
revealed a significant light intensity dependence that may also
be due to trapping.63 The observed rate constants were hence
expected to report on rate-limiting electron transport in the
mesoporous thin film with fast interfacial electron transfer
when the redox equivalents came in close proximity.
There are two aspects of the random-walk model that have

not withstood the test of time. First, many comparative studies
have shown that the rate constants are sensitive to the identity
of the sensitizer and hence are not solely limited by electron
transport.64,65 Examples of this are given in the following
section. Second, the oxidizing equivalent does not remain fixed
at the injection site, but rather undergoes intermolecular self-
exchange electron transfer with neighboring sensitizers that is
often called “hole hopping”.66 The utilization of polarized light
to create an anisotropic population of interfacial states has
provided clear evidence that hole hopping follows excited-state
injection under many experimental conditions.66 Monte Carlo
simulations indicated that an oxidizing equivalent can circum-
navigate the entire nanocrystal before charge recombination
occurs.66,67 This remarkable result led to the conclusion that if
properly controlled, hole hopping could be utilized to transfer
redox equivalents to desired locations. Mechanistic insights
have also been garnered through electrochemical measure-
ments wherein a potential step sufficient to oxidize the
sensitizers initiates oxidation at the FTO substrate.68,69 An
advantage of the spectroscopic approach is that it is contactless
and amenable to diverse experimental conditions. For example,
hole hopping is absent for TiO2|RuC in neat CH3CN, but
rapid in 100 mM LiClO4/CH3CN; a finding that would be

Figure 5. (a) Lev́y distribution of rate constants with k = 2.5 × 104s−1

and the indicated β values. (b) Illustration of intermolecular self-
exchange “hole-hopping” and electron transport between trap states
modeled as a continuous time random walk. (c) Time resolved
absorption change associated with TiO2(e

−)|RuIII →TiO2|Ru
II charge

recombination with overlaid fits to the KWW function, eq 3.
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difficult to establish through electrochemical measurements
alone.66

An important mechanistic advance was the realization that
hole-hopping rates are directly correlated to charge recombi-
nation.70 Sensitizers that undergo fast hole hopping recombine
more rapidly than those that hop more slowly. This correlation
was evident in a collaboration with the Polo research group
through a study of cis-Ru(dcb)(phen′)(NCS)2 sensitizers,
where phen′ is a 4,7-disubstituted 1,10-phenantholine, Figure
6a.71,72 Chronoabsorptometry data, where the color change

was monitored after a potential step sufficient to oxidize the
sensitizers was applied, were recast as an Anson plot from the
apparent diffusion constant, Dapp, and the hole-hopping rate
constant, khh, were extracted, Figure 6b. The khh values
spanned about a factor of 7 and followed the same trend as did
charge recombination: Ru(Me4-phen) ≪ Ru(Ph2-phen) <
Ru(Me2-phen) ≈ Ru(phen), Figure 6c. The correlation shown
in Figure 6 is not 1:1, yet provides strong evidence that lateral
hole hopping is mechanistically coupled to charge recombina-

tion.72 The data also provide an alternative explanation for
slow charge recombination with the classical N3 sensitizer, cis-
Ru(dcb)2(NCS)2.

73 This sensitizer also displays unusually slow
hole-hopping kinetics attributed to a surface orientation where
one carboxylate group from each dcb ligand binds to the
surface with decreased intermolecular electronic coupling
relative to cis-Ru(dcb)(phen′)(NCS)2 sensitizers.74 Temper-
ature-dependent kinetic studies made as a function of the
surface coverage support the conclusion that rapid hole
hopping promotes charge recombination.75 Taken together,
these findings indicate that unwanted charge recombination
can be inhibited through control of lateral hole hopping, an
unexpected finding that may be further exploited in future
research.76

2.3.3. Recombination to Acceptor−Bridge−Donor (A−B−
D) Sensitizers. A proven strategy for inhibiting unwanted
charge recombination is to regenerate the oxidized sensitizer
by intramolecular electron transfer.77−80 In this strategy, after
excited-state injection the oxidizing equivalent (or “hole”) is
transferred from the sensitizer to a donor by intramolecular
electron transfer. Ideally intramolecular electron transfer is
rapid and does not sacrifice much free energy. Early examples
were used to boost the open circuit photovoltage of solar
cells,80 and more recent studies have utilized water oxidation
catalysts as the donors.81 An interesting observation was that a
relatively small structural change in the bridge altered the
electron transfer mechanism from adiabatic to nonadiabatic.
Interestingly, for adiabatic transfer there is no kinetic
advantage to translation of the oxidizing equivalent or “hole”
away from the interface.77

Electron transfer theories predict that as the quantum
mechanical mixing of the donor-and-acceptor wave functions,
HDA, increases the absolute value of the free energy decreases,
|ΔG°ad| < |ΔG°|.82−84 An increased HDA is also expected to
lower the electron transfer barrier. These theoretical expect-
ations are difficult to test experimentally, as formal reduction
potentials are poor indicators of ΔG° when HDA is large.

85 To
circumvent this difficulty, excited-state injection into TiO2 was
utilized to initiate intramolecular electron transfer with kinetic
analysis of the approach to equilibrium.86 Four acceptor−
bridge−donor (A−B−D) sensitizers were investigated where
the bridge unit was designed to control HDA.

86−88 Care was
taken to ensure that the Keq values were near unity so that a
measurable concentration of all the species was present at
equilibrium.
The sensitizers have two redox active groups that differ only

by the orientation of an aromatic bridge that links them: a
planar aromatic bridge (p) supports strong electronic coupling,
HDA > 1000 cm−1, and a nonplanar (x) lowers the coupling,
HDA < 100 cm−1, without a significant change in the geometric
distance.87 Figure 7 shows that substituents on the cyclo-
metallating ligand tuned the RuIII/II reduction potential such
that the free energy for hole transfer was unfavorable for 1, and
favorable for 2.
Pulsed light excitation resulted in a long-lived injected

electron that provided sufficient time for a RuIII/II−B−TPA+/0

quasi-equilibrium to be established and for kinetic determi-
nation of the forward and reverse rate constants, Keq = k1/k−1,
over an 80° temperature range.86 A significant kinetic barrier
was measured under all conditions indicating that a true redox
equilibrium was operative. A van’t Hoff analysis provided clear
evidence that Keq was closer to unity for p and hence |ΔG°ad| <
|ΔG°| as predicted theoretically, Figure 7b. The magnitude of

Figure 6. (a) cis-Ru(dcb)(phen′)(NCS)2 sensitizers utilized for hole
hopping and charge recombination studies. The color code is used
throughout this figure. (b) Anson plot of the mole fraction of oxidized
sensitizers plotted vs time1/2 measured after a potential step sufficient
to oxidize the sensitizers. Overlaid is a fit from which the apparent
diffusion coefficient, Dapp, and hole-hopping rate constants, khh, were
extracted. (c) Normalized absorption changes due to TiO2(e

−)|RuIII

→TiO2|RuII charge recombination with overlaid fits to the KWW
function.
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the free energy loss from adiabatic electron transfer is
significant and is a function of the reorganization energy,
Figure 7c. Collectively the data show that the absolute
magnitude of the thermodynamic driving force for electron
transfers are decreased when adiabatic pathways are operative,
a finding that should be considered in the design of hybrid
materials for solar energy conversion. The data also provide a
text book example of an adiabatic electron transfer equilibrium
for the p sensitizers. This is significant since the classification
as adiabatic, nonadiabatic, or at the borderline is generally
unknown and often inferred from kinetic rate constants or by
intuition. Here the van’t Hoff data for the p sensitizers clearly
indicate ΔH° = qp = 0 providing an unambiguous case of
adiabatic electron transfer. Adiabatic redox equilibrium
constants are determined solely by ΔS°. For the x sensitizers,
ΔH° = ± 7.0 kJ mol−1 and electron transfer is nonadiabatic.
A decreased electron transfer barrier is anticipated for

adiabatic electron transfer. However, Eyring analysis revealed
that ΔG‡ was 30 kJ mol−1 for the uphill reaction and 25 kJ
mol−1 for the downhill reaction regardless of the bridge
identity.88 The enthalpies of activation were in fact smaller for
adiabatic electron transfer, but this was offset by a more
unfavorable ΔS‡. Hence this analysis supports an intriguing
conclusion: while adiabaticity lowers ΔH‡ for thermo-
dynamically uphill reactions, ΔS‡ becomes the dominant
contributor to ΔG‡. Because electron transfer in the p
sensitizers satisfies criteria for solvent dynamical control, the
impact of solvent and bridge motion (entropy) are expected to
be critical. In contrast, x sensitizers lie within a nonadiabatic
regime where electron transfer is limited by HDA. Even though
coupling accelerates electron transfer by allowing a rapid
approach to the transition state, a substantial entropic penalty
is imposed.88 In addition, ΔS‡ was shown to control interfacial
electron transfer dynamics from anatase TiO2 to molecular
acceptors.89 An unfavorable ΔS° is also expected when an
injected electron and an oxidized sensitizer with translational
freedom localize on one sensitizer.

2.4. Interfacial Electric Fields. Electrons injected into
TiO2 emanate an electric field that significantly influences the
absorption spectra of surface anchored sensitizers.90,91 The
electro-absorption features provide a useful means to quantify
the impact of electric fields on sensitizer orientation, ion
migration (termed screening), and interfacial electron trans-
fer.92−105 The feature has also been utilized to quantify the
field strength of rigid-rod sensitizers set at variable distances
from the TiO2 surface.95 A simplified basis for the electro-
absorption is shown in Figure 8a. A key parameter is the light-
induced dipole moment vector change, Δμ⃗, of the sensitizer
relative to the electric field vector, E⃗. A parallel orientation
gives rise to a red shift in the absorption spectra, and an
antiparallel orientation results in a blue shift, Figure 8b.91,92

Interestingly, the surface adsorption of Lewis acidic cations
induces spectral shifts in the opposite direction of those
measured after excited-state injection.34 An example of the
antiparallel orientation is given in Figure 8c for TiO2|RuC.
In a single dipole approximation, the magnitude of the

spectral shift, ΔU, reports directly on E⃗, eq 5. A more precise
determination of E⃗ utilizes the first derivative of the absorbance
spectrum, eq 6.

U EμΔ = −Δ ⃗· ⃗ (5)

A
A Ed

dν
μ
ν

Δ = − Δ ⃗· ⃗
(6)

The magnitude of E⃗ has been estimated to be about 2.7 MV
cm−1 under one sun illumination conditions.90 This corre-
sponds to an ∼40 mV potential drop across the sensitizer.
Note that accurate determination of the field strength requires
knowledge of Δμ⃗ that has generally been determined by DFT
calculations or extracted from Stark spectra of related
sensitizers without the surface binding groups. This uncertainty
inspired construction of a traditional Stark apparatus that has
shown Δμ⃗ to be sensitive to functional groups and to spin
changes that accompany light absorption.93,94 Molecular
sensitizers with well-defined Δμ⃗ values positioned precisely

Figure 7. (a) Structures of four Ru−B-TPA sensitizers that support adiabatic (p) and nonadiabatic (x) electron transfer. The potential energy
surfaces show that after excited-state injection, intramolecular electron transfer from the remote TPA is disfavored for 1 and favored for 2. Note
that the expectation of a smaller free energy change for adiabatic (solid) vs nonadiabatic (dashed) was realized experimentally while the
corresponding decrease in the barrier was not (see text). (b) A van’t Hoff plot showing that the equilibrium constants for the p sensitizers were
closer to unity than the x, consistent with |ΔG°ad| < |ΔG°|. The data provide compelling evidence for an adiabatic equilibrium in the p sensitizers
that is determined solely by ΔS°. (c) Plot of the Gibbs free energy change versus the electronic coupling for the indicated reorganization energies.
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at the TiO2 electrolyte interface can serve as in situ probes of
the electric fields present in regenerative and photoelectrosyn-
thetic cells.

2.4.1. Screening Dynamics. The electro-absorption ampli-
tude associated with E⃗ is known to decrease over time periods
where the TiO2(e

−) concentration is constant. This behavior is
attributed to screening of the field experienced by the sensitizer
through ion migration. Kinetic data for charge screening before
the dashed 100 μs line in Figure 9a are well described by the

KWW model. The 5.3 × 104 s−1 rate constant measured in the
Li+ electrolyte indicated an ability to more rapidly screen the
field than a Mg2+ containing electrolyte, 4.7 × 102 s−1.96 The
first-derivative shape is maintained through the screening
process implying that the cations insert themselves between
the sensitizer and TiO2, Figure 9b.
Electron transfer from TiO2 to triiodide is most rapid with

the Li+ electrolyte cations, implying that more effective
screening results in faster recombination with anionic I3

−.100

A study with a series of Lewis acidic cations supports this
implication and provided rate constants that increased in the
order Na+ > Li+ > Mg2+ > Ca2+.97 However, this same cation
trend was found with neutral donors, such as triphenylamines
and phenothiazine, that are monocations after electron transfer
which precludes such a simple interpretation.98 Although
electric fields are well-known to impact ions and polar
molecules,100−105 these Coulombic interactions are not, as
was previously thought,97 the predominant factor controlling

Figure 8. (a) An idealized picture of TiO2|RuC showing an
antiparallel orientation of the sensitizer dipole moment change, Δμ⃗,
and the electric field, E⃗, vectors. (b) Explanation of how the relative
orientation between Δμ⃗ and E⃗ impacts the measured spectral shift.
The solid and dashed curves are the absorption in the presence and
absence of the field, which are typically plotted as the difference
spectra shown in yellow. (c) Absorption spectra of TiO2|RuC
measured in the presence and absence of Li+ cations (upper), before
and after electrochemical reduction of the TiO2 (middle), and after
pulsed laser excitation and regeneration by iodide.

Figure 9. (a) Absorption versus log time measured after pulsed 532
nm light excitation of TiO2|RuC in 0.1 M LiClO4 (black) or
Mg(ClO4)2 (red) and 0.25 M TBAI. The positive absorption tracks
the [I3

−] and TiO2(e
−) concentrations while the bleach monitors the

electro-absorption feature associated with the electric field. Note that
at times less than 100 μs (dashed line) the field is constant yet the
electro-absorption feature decays with cation dependent kinetics fit to
the KWW function, the behavior attributed to charge screening. (b)
Idealized model for the screening response of Mg2+ cations (orange
spheres) to the electric field created by excited-state injection.
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recombination. Free energy considerations, the diffusion length
of the injected electron, and reaction sphere models described
in more detail below are now thought responsible for the
cation-dependent reduction of I3

−. This reaction is kinetically
sluggish, providing a large time window to monitor screening,
as the one-electron reduction of I3

− is thermodynamically
uphill.40

2.4.2. First-Order Recombination to Electrostatically
Bound Acceptors. Detailed mechanistic studies of charge
recombination have failed to reveal the origin(s) of the
irradiance dependent, nonexponential kinetics for charge

recombination.34 An interesting breakthrough came when
conditions were identified where recombination displayed first-
order kinetics.89,106 In these studies, dye sensitization was
utilized to quantify the reaction of TiO2 electrons with
oxidized triphenylamines TiO2(e

−) + TPA+ → TiO2 + TPA.
The triphenylamines were linked to the sensitizer or the TiO2
surface or were dissolved in an external 0.1 M LiClO4/CH3CN
electrolyte, Figure 10. The activation energies were small for
the solution phase TPAs, 12.5 kJ mol−1, relative to that
anchored to the TiO2 surface (23 kJ mol−1) or covalently
linked to the sensitizer (27 kJ mol−1). As a reference point,

Figure 10. (a) TPA compounds utilized and the measured activation barriers for the recombination reactions. (b) Dye-sensitization mechanism
utilized to generate the TiO2(e

−) and TPA+ reactants. (c) Reaction sphere model for the TPA in fluid solution. When the driving force for electron
transfer was large (blue) electron transfer followed a first-order kinetic model consistent with transfer from TiO2 directly to the Br-TPA+ and Cl-
TPA+, while increasingly dispersive kinetics were observed as −ΔG° decreased from black to blue.

Figure 11. (a) Absorption difference spectra measured after pulsed light excitation of TiO2|Ru(NH3)5(ina) with overlaid spectral simulations based
on linear combinations of the spectra shown in b). (b) Absorption difference spectrum for RuIII−RuII and the 1st derivative of the TiO2|
Ru(NH3)5(ina) ground-state spectrum used to quantify the magnitude of the surface electric fields. (c) Representative kinetic data for charge
combination and electric field strength. (d) Absorption difference spectra measured after pulsed light excitation of TiO2|Ru(NH3)5(eina) with
overlaid spectral simulations based on linear combinations of the spectra shown in e). (e) Decay-associated spectra obtained from kinetic analysis
of the transient data. (f) Kinetic data for charge recombination and molecular flipping.
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activation energies to a family of three Ru trisbipyridyl
sensitizers (measured in the absence of TPA) was on average
20 ± 3 kJ mol−1.89,106

The four solution TPAs had tuned formal E°(TPA+/0)
reduction potentials that spanned a 0.5 eV range, Figure 10b.
First-order kinetics were only measured when the thermo-
dynamic driving force for electron transfer was large.106 This
represented a nonintuitive finding, as one would reasonably
anticipate a second-order recombination reaction, r =
k[TPA+][TiO2(e

−)].55 Note however that under these
conditions the TPA+ acceptor does not undergo lateral hole
hopping, as an oxidized sensitizer would, and the TiO2(e

−) was
stabilized by a LiClO4 acetonitrile electrolyte.
The first-order reactivity indicated that strong Coulombic

forces held the TPA+ near the surface such that recombination
occurred in a unimolecular type step. When the driving force
was less favorable, dispersive KWW kinetics were observed. An
Onsager−Perrin-like reaction sphere model was proposed
where the tunneling distance was proportional to the free
energy change, Figure 10c. Activation energies were the same
within experimental error, 12.5 kJ mol−1, for the solution phase
TPA+ acceptors, indicating that the barriers for electron
transport and interfacial transfer were similar. The average rate
constants increased with −ΔG°, consistent with electron
transfer in the Marcus normal region. The data imply that
when the electronic coupling to remote acceptors is small, first-
order recombination is possible.89,106 This finding is supported
by more recent studies on conductive oxides described in
section 2.4.4.
2.4.3. Sensitizer Flipping. The time dependence of electric

fields present after pulsed light excitation is inherently difficult
to quantify, as it requires deconvolution of relatively small
spectral shifts in the presence of large absorption changes
associated with the oxidized sensitizers. It is for this reason that
the electro-absorption feature went undiscovered in the dye-
sensitized field for so long.90,91 The sensitizer [Ru-
(NH3)5(ina)]

2+ with Δμ⃗ = 9.1 D was found to be a sensitive
in situ probe for time-dependent electric field determina-
tions.107 Pulsed laser excitation of TiO2|Ru(NH3)5(ina) in neat
CH3CN led to a time-dependent blue shift of the absorption
bleach, Figure 11a. The transient spectra were quantitatively

modeled by a sum of contributions from the electric field and
the TiO2(e

−)|RuIII(NH3)5(ina) charge separated state, Figure
11b. The average rate constant for electric field contraction
was within experimental error, the same as that for charge
recombination, k = 6.8 × 104 s−1 Figure 11c. This suggested
the presence of a homogeneous field strength that contracted
as recombination and the number of injected electrons
decreased. In the presence of Li+ electrolyte cations E⃗
contracted about 10 times faster, behavior consistent with an
increased interfacial permittivity and charge screening.
Light excitation of the ethyl ester derivative TiO2|Ru-

(NH3)5(eina) resulted in spectroscopic changes quite distinct
from the carboxylic acid analogue, Figure 11d. The absorption
spectra displayed an initial bleach that evolved with time into
first-derivative spectra whose sign indicated that the sensitizers
had flipped over.108 Importantly, the spectral signature of the
flipped sensitizers persisted after charge recombination was
complete and the field associated with the injected electrons
was gone. This indicated that the flipped molecules were
metastable on the oxide surface. Decay-associated spectra,
DAS, allowed extraction of the rate constants for charge
recombination and for flipping, Figure 11e and f. Kinetic
isotope studies with TiO2|Ru(ND3)5(eina) revealed kH/kD =
26.7 and 0.12 for charge recombination and for flipping,
respectively.108 In all cases, charge recombination was more
rapid when the oxidized sensitizer was flipped over, behavior
attributed to strong electronic coupling through the amine
hydrogen atoms.108

The electric field induced by excited-state injection created a
torque sufficient to flip these weakly anchored sensitizers.108

Flipping was absent with the more strongly binding carboxylic
acid derivative and with SnO2/TiO2 core/shell materials that
presumably screen the field experienced by the sensitizers
more effectively. Spectro-electrochemical data showed that a
10-fold larger field strength was required to flip the sensitizers
in the Ru(II) formal oxidation state, indicating that the
increased acidity of the amines in the Ru(III) state plays an
important role in the light driven creation of the metastable
flipped orientation.110 Overall, the data show that electric fields
created at illuminated semiconductor interfaces are sufficient
to reorientate molecules anchored to its surface. In future

Figure 12. (a) Layer-by-layer arrangement of redox active molecular components on In2O3:Sn, nITO, with the relative free energy changes and the
measured average recombination rate constants. (b) The absorption due to TPA+ plotted vs log time after pulsed 532 nm excitation of the assembly
in (a). Overlaid on the data is a fit to a first-order kinetic model. (c) Absorption changes due to the oxidized Ru(bda) catalysts shown in (a) with
overlaid fits to a sum of two KWW functions.
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research, one can imagine utilizing a variety of surface
anchoring groups whose flipping behavior reports directly on
the underlying electric field strength.111−115

2.4.4. Probing the Electric Double Layer. Transparent
conductive oxide materials (TCOs) have many practical
applications,116 yet have received relatively little attention for
dye sensitization, in part because it is difficult to generate a
significant photovoltage and hence power conversion efficiency
in regenerative solar cells. The free electron concentration in a
TCO is not appreciably influenced by excited-state injection.
Nevertheless, TCOs support long-lived charge separation
when excited-state electron transfer occurs remote to the
surface with free energy gradients that direct the electron
toward, and the oxidizing equivalent away, from the
conductor.117−119 A layer-by-layer assembly technique with
ZrIV Lewis acids was utilized to spatially arrange redox active
molecular components on mesoporous thin films of In2O3:Sn
(nITO) nanocrystallites.120−123 For the full molecular
assembly shown with at terminal triphenyl amine (TPA),
long-lived charge separation was achieved with a quantum
yield of 0.2 and first-order recombination kinetics (k = 1.5 s−1)
to TPA+, Figure 12a and b.118 This data support the notion
that first-order recombination may be more commonly
observed with weakly coupled acceptors located outside of
the electric double layer.89,106 Comparative studies revealed
that the viologen acceptor and the iron donor were required
for such long-lived charge separation. For example, when the
TPA was absent, recombination to the FeIII center was about
1000 times faster. Interestingly, there was little kinetic
advantage to having the FeII donor relative to the sensitizer
alone. An advantage of the layer-by-layer assembly is hence
that the impact of an individual redox active component can be
determined without significant synthesis.

When the terminal TPA was replaced by a Ru(bda)-type
water oxidation catalyst, long-lived charge separation (k = 0.17
s−1) was again achieved, Figure 12c.124 Activation of water
oxidation catalysts to higher oxidation states by proton-
coupled electron transfer is difficult, as it occurs in competition
with charge recombination, yet was clearly observed in these
assemblies. Sustained water oxidation was also evident with
Faradaic yields that approach 70%. The integration of
molecular components onto mesoporous TCO thin films
that support long-lived charge separation and water photo-
oxidation represent successful demonstrations that conducting
materials are viable for applications in solar fuel production.
For fundamental electron transfer, the TCO materials may

serve as electron acceptors (n-type behavior) or as electron
donors (p-type).125 The Fermi level of the TCO is of relevance
rather than ECB and/or trap states in semiconducting materials.
Hence a significant advantage of TCOs is that their metallic
character allows potentiostatic control of the Fermi level (EF)
and thus the driving force for electron transfer, −ΔG° =
nF(E°′ − EF).

126,127 By mapping kinetics through Gerischer’s
distribution, electron transfer to acceptors positioned within
the electric double layer, EDL, have been quantified
spectroscopically after excited-state injection into the
TCO.128,129 This approach holds some similarity to previous
electrochemical studies of redox terminated self-assembled
monolayers on gold electrodes,130−134 yet holds promise to be
more general and useful, particularly for ultrafast interfacial
electron transfer reactivity.
In the classic EDL structure, the surface anchoring O and P

atoms reside in the inner-Helmholtz plane (IHP) and the
redox active site is located in the outer Helmholtz plane
(OHP).135−138 By systematically positioning redox active
groups away from a nITO interface, the diffuse layer was

Figure 13. (a) Schematic of the approach for initiating electron transfer from nITO to molecular acceptors spaced at different locations within the
electric double layer for nITO|−(MeP2)n−RuP (top) and nITO|−(MeP2)n−TPA (bottom). Excited-state injection, kinj, is initiated with a pulsed
laser, and the subsequent electron transfer from nITO to TPA+ or RuIIIP (kcr) is quantified spectroscopically as a function of the applied potential.

(b) Charge recombination kinetic data for the indicated assemblies as a function of − ΔG°. (c) Plot of k
k

cr

cr
max versus −ΔG° with overlaid fits to the

Marcus−Gerischer expression in eq 7. (d) λ values vs distance R for nITO|−(MeP2)n−RuP (red circles) and nITO|−(MeP2)n−TPA (blue circles)
for data obtained with a 0.1 M LiClO4/CH3CN electrolyte.
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systematically probed in the layer-by-layer approach, Figure
13a.128,129 The redox active TPA and RuP were selected, as
they have small inner-sphere reorganization energies such that
λ = λi + λo ≈ λo.

139−141 Their electrochemical and
spectroscopic properties were insensitive to their physical
location within the EDL in 0.1 M LiClO4/CH3CN electrolyte.
In contrast, the free energy dependence of the interfacial
electron transfer kinetics was highly sensitive to their location.
Light absorption initiates excited-state injection, and the
recombination rate constants were quantified spectroscopically
as a function of −ΔG°. Figure 13b shows kinetic data for
nITO|−(MeP2)n−TPA with n = 0, 1. The kinetic data were
nonexponential, and kcr was approximated as the inverse of the
time required for the initial amplitude to decay by half.
Marcus−Gerischer analysis allowed determination of λ, eq 7.
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Gerischer’s prediction of activationless electron transfer
when −ΔG° > 2λ, where the maximum rate constant, kcr

max, is
independent of the driving force was evident in these data,
Figure 13c. The −ΔG° value at 1/2 kcr

max is equal to λ, and
values so quantified as a function of distance revealed a
remarkable result: λ is near zero when the redox active group is
present within the OHP, Figure 13d. Very similar data were
obtained with aqueous electrolytes.129 As the outer-sphere
reorganization is expected to control the barrier for electron
transfer, the data indicate fast and barrierless transfer within
the Helmholtz planes. At distances greater than ∼20 Å in the
diffuse layer, λ approximately equals the value expected for
homogeneous reactions, λ ≈ 0.9 eV. Such data could not be
modeled by dielectric continuum models and required higher
levels of theory that take into account the greatly reduced
dielectric constant within the Helmholtz planes.142−144 This
dye-sensitization approach provides exciting opportunities to
test interfacial electron transfer theories and to probe the
impact of the electric double layer on electron transfer and
catalysis.
As one final example of the utility of conductive oxides for

fundamental mechanistic study, the reorganization energy for
proton-coupled electron transfer, λPCET,

145 of the water
oxidation catalyst [RuII(tpy)(4,4′-(PO3H2)2-bpy)-
OH2]

2+(RuII-OH2) was quantified. Pourbaix diagrams indicate
that, for pH > 2, oxidation results in the loss of an electron
from the metal and a proton from the coordinated water
molecule.146,147 For this reason, the recombination reaction
between nITO and the oxidized catalyst was tuned above and
below the pKa of Ru

III-OH2 to occur with (2 ≤ pH ≤ 5) and
without (pH < 1.7) proton involvement. The kinetic data
revealed that the reduction from RuIII-OH to RuII-OH2
required 0.4 eV higher reorganization energy than did the
pure electron transfer reaction. Future studies in which the
PCET acceptor is positioned with the EDL are expected to
provide insights into how the oxide interface influences λPCET
that is of direct relevance to water oxidation.145,148

3. CONCLUSIONS AND FUTURE PERSPECTIVES

The mesoporous nanocrystalline TiO2 thin films introduced in
1991 have provided outstanding opportunities for fundamental
molecular-level characterization of interfacial electron transfer.
These materials offer combined high surface area and visible

transmittance for spectroscopic analysis with high stability in
electrolyte solutions for photo- and electrochemical measure-
ments. The electron transfer kinetics are often understood
through Gerischer diagrams, yet in some cases, like charge
recombination, the observed rate constants are also impacted
by hole hopping and/or transport of the injected electrons.
The discovery of an electro-absorption feature provides direct
information on the magnitude of the electric field, the
sensitizer orientation, and charge-screening dynamics that are
not easily elucidated by other means. Regeneration through
iodide oxidation studies implicate inner-sphere electron
transfer pathways with some sensitizers. Acceptor−bridge−
donor sensitizers provide a means to photoinitiate redox
equilibria providing keen insights into the impact of electronic
coupling on intramolecular electron transfer.
With these advances, it is worthwhile to consider the future

of dye-sensitized semiconductors from the viewpoint of the
two most commonly envisioned applications: Regenerative and
Photoelectrosynthetic Cells. Below, these applications are
discussed with reference to the fundamental studies described
previously (sections 2.1−2.4) and the relevant literature.

Regenerative Solar Cells. The confirmed 12.3% efficiency
of dye-sensitized solar cells under air-mass 1.5 conditions is not
yet competitive with emerging perovskite solar cells or with
conventional photovoltaics,149 but they continue to be pursued
for low light and window applications where they often
outperform traditional Si photovoltaics.150−152 Our ability to
quantify electric fields and ion migration dynamics as a
function of solar irradiance will likely allow under further
optimization for these conditions (sections 2.4.1−2.4.3). A
significant energy loss is associated with the iodide/tri-iodide
redox mediator that includes nonquantitative regeneration at
the power point condition (decreasing fill-factors) and
significant free energy losses associated with a disproportiona-
tion reaction (decreasing open circuit photovoltages). The
“inner-sphere” strategies (sections 2.2.1 and 2.2.2) enhance
regeneration while the A−B−D sensitizers (section 2.3.3) buy
more time for iodide oxidation by slowing recombination.
However, alternative redox mediators seem necessary for >5%
efficiency increases. Promising CoIII/II153−155 and CuII/I156−160

mediators continue to be pursued that possess significant
structural changes with electron transfer that may inspire
discovery of new classes of mediators.161,162 An additional
benefit of the CuII/I mediators is that they function in the
absence of an external solvent,160 and these as well as solid-
state hole transport materials163 continue to offer the promise
of greatly enhanced performance. A novel idea is to use lateral
hole hopping as a means to collect the oxidizing equivalents at
the counter-electrode;164 however, the efficiencies obtained by
this approach have thus far been very low. The identification of
new redox mediators that enable large open circuit photo-
voltages, sensitizers with increased absorption in the near-
infrared, and solid state hole conductors represents a key next
step for practical applications as regenerative solar cells.

Photoelectrosynthesis Cells.Water splitting continues to
be the target of dye-sensitized photoelectrosynthesis cells.5

The general idea is to sensitize the TiO2 in the celebrated
Fujishima-Honda cell to visible light with molecular dyes.165

However, unlike iodide oxidation, water oxidation to O2
requires four oxidizing equivalents and is both kinetically and
thermodynamically more demanding. One strategy is to utilize
redox mediators to deliver oxidizing equivalents to a catalyst of
a tandem photoelectrode positioned away from the dye-
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sensitized semiconductor interface.166,167 A more common
strategy is to integrate water oxidation catalysts into the dye-
sensitized oxide interface (section 2.4.4).5,168−170 However,
water oxidation is slow relative to recombination even with the
most well optimized catalysts.171 Therefore, materials or
sensitizers that inhibit recombination (section 2.3.3) and
catalysts with higher turnover frequencies are critically needed.
Note that the turnover frequencies of most water oxidation
catalysts increase with pH, while the excited-state injection
yields and durability decrease in alkaline solutions (section
2.1.3). The creation of carefully designed architectures that
enable quantitative injection at the dye-sensitized interface
with hole-transfer to weakly coupled water oxidation catalysts
present in an alkaline environment would be impactful. The
creation of such a highly organized interface that is also
thermodynamically stable remains a challenging and important
goal.
An intriguing idea is to utilize the electrons injected into

TiO2 for proton or CO2 reduction. This idea is particularly
appealing, as p-type oxide materials that could serve in a similar
manner are severely lacking. The injected electrons are well
formulated as localized TiIII states whose reducing power can
be widely tuned with electrolyte cations (sections 2.1.2 and
2.1.3) and with solvent.172,173 They are potent one-electron
reductants, but do not efficiently drive the multielectron
transfer reactions necessary for solar fuel generation. Studies
with radical clocks have provided a time scale for sequential
one-electron transfer reactivity.174,175 With surface anchored
catalysts, there is also evidence that inner-sphere two-electron
transfer pathways can be accessed.176 Colloidal TiO2 and
related metal oxide nanoparticles have been shown to
participate in proton-coupled electron transfer (PCET)
reactions (section 2.4.4) with organic reactants.177−180 Taken
together, this prior work indicates that multielectron and
PCET reactivity with catalysts positioned at precise locations
within the electric double layer provide the possibility to drive
reduction reactions that produce solar fuels from water and
CO2 far more efficiently.
Photoelectrosynthesis cells that would yield high value

organic compounds for applications in medicine and
biotechnology embody an emerging area for dye sensitization.
So-called “photoredox chemistry” is typically performed in
fluid solution with sacrificial reagents, sensitizers (often called
photocatalysts in this field), and organic reactants.181−183 An
alternative approach is to photoinitiate the organic trans-
formations within the pores of dye-sensitized mesoporous thin
films.184 With transparent conductive oxides (section 2.4.4),
reducing and/or oxidizing equivalents can be photogenerated
for oxidative or reductive catalysis. This approach minimizes
reaction volumes, facilitates isolation of the desired products,
and enables more facile reuse of the molecular photocatalysts/
sensitizers. In principle, sacrificial reagents could be eliminated
completely with improved efficiency on an absorbed photon
basis. Indeed, the quantitative ultrafast excited-state injection
(section 2.1.1) removes the present restriction of a sufficiently
long-lived excited state that is necessary for diffusional
quenching by sacrificial reagents. By increasing efficiency,
detailed insights into the mechanisms of the organic trans-
formations enabled by these high surface area materials can be
elucidated by the techniques described throughout this
Perspective. Indeed, the use of mesoporous thin films in
photoelectrosynthesis cells to produce high-value organic

compounds represents a promising direction for future
research for dye-sensitized mesoporous thin films.
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(6) O’Regan, B.; Graẗzel, M. A low-cost, high-efficiency solar cell
based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737−
740.
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